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Overview

The objective of this research is to study aeroacoustic noise generation in a supersonic

round jet. In particular we want to understand the effect of turbulence structure on the

noise without numerically compromising the turbulence itself. This means that direct

numerical simulations are needed. In order to use DNS at high enough Reynolds numbers

to get sufficient turbulence structure we have decided to solve the temporal jet problem,

using periodicity in the direction of the jet axis. Physically this means that turbulent

structures in the jet are repeated in successive downstream cells instead of being gradually

modified downstream into a jet plume. Therefore in order to answer some questions about

the turbulence we will partially compromise the overall structure of the jet.

This report will be presented in two chapters. The first chapter is divided into two

sections. The first section describes some work on the linear stability of a supersonic round

jet and the implications of this for the jet noise problem. In the second section we will

present preliminary work done using a TVD numerical scheme on the CM5 at the Univer-

sity of Minnesota. This work is only two.-dimensional (plane) but shows very interesting

results, including weak shock waves. However this is a non-viscous computation and the

method resolves the shocks by adding extra numerical dissipation where the gradients are

large. One wonders whether the extra dissipation would influence small turbulent struc-

tures like small intense vortices. Nevertheless we are still pursuing a three-dimensional

version using this method for the purpose of comparing with other methods, and perhaps

answering some of our doubts.

The second chapter is an extensive discussion of preliminary numerical work using the

spectral method which we prefer to use to solve the compressible Navier-Stokes equations

to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and

streamwise direction and a 1-D B-spline basis representation in the radial direction. The

B-spline basis is locally supported and this ensures block diagonal matrix equations which

are solved in O(N) steps. A very accurate highly resolved direct numerical simulation

(DNS) of a turbulent jet flow is expected. This is a modification of a boundary layer code

developed by Bob Moser.



Chapter 1 ." Preliminary Studies of Inviscid Compressible Jets

Section 1 • The stability of a supersonic round jet

Our purpose in doing this stability problem is to provide initial conditions for the

nonlinear computations. We want to start with the most unstable disturbance since this is

what would be found in the natural problem. This problem has been studied by Tam and

Hu(1989) however they didn't present the information which we require. As a result of our

computations we have found some new results which have not been previously reported.

The basic stability equation was obtained by linearizing the equations for inviscid

compressible flow in cylindrical coordinates, taking small perturbations from an axially

symmetric basic state. One can reduce this to a single second order equation for the

pressure perturbation, which is expressed in separation of variables form as

where r is the radial coordinate. The equation for t5 is

1 2kd_/dr 1 dp d/5 (a_ - _k) 2 k2d2/5+ -+ p 0
dr---7 r w - g k f -_r -_r + =

where g(r) is the prescribed axial velocity profile, _(r) and _5(r) the prescribed pressure

and density of the base state, and g2(= 7RT) is the square of the sound speed. This

equation agrees with Tam and Hu. This equation is to be solved with boundary conditions

which require the solution to be bounded at r = 0 and to possess only outgoing waves at

infinity. It is an eigenvalue problem for complex a_ when k and m are given. The flow is

unstable if ImaJ < 0.

The velocity profile was taken in the same form as in Tam and Hu as a "half-Gaussian"

function which is given by

f_=uj r <h

= r>h



Half - Gaussian jet profile

h=O.9r
h+b=r

 iI!i....
which is sketched here in order to define the parameters b and h. We define the jet radius

to be rj = b + h and all computations were done with b/rj = .1, h/rj = .9. We have taken

the temperature profile to be of a form similar to the velocity

T=Tj r<h

9 - r>h

and have taken/5(r) = p_, constant across the jet. Then fi is related to T by

and

_t2 : a2T/T_.

Sometimes in problems like this the temperature is related to the velocity profile by the

Crocco-Buseman formula. But this is a viscous dominated profile which results when the

Prandtl number is unity, and it doesnt make a lot of sense for high Reynolds number flows

such as this. In all the work done by us so far we have taken Tj : Too so the temperature

is constant across the jet.

We have solved this eigenvalue problem by a method described in a book by Betchov

and Criminale. We integrate inward from a large radius, using an asymptotic formula

to identify outgoing waves, and we integrate outward from the origin. Where the two

computations meet we must have i5 and dD/dr continuous. This does not occur unless



cohas the proper value. We iterate on cousing a Newton-Raphsonprocedure until our

continuity requirement is attained. The biggest problem was that the procedure doesn't

convergeunless one starts near the proper value. This meansthat is was necessaryto

changeparametersby small increments,starting from a known result.

Results have beenobtained for jet Mach numbersof Mj = 2 and 2.5. The result for

Mj = 2 is shown in a figure at the end of this section. Here we present curves of growth

rate versus k for a number of values of rn (the azimuthal wavenumber). What is observed is

that the maximum growth rate for given m increases as rn increases, reaching a maximum

at rn = 4 and then it decreases again as rn becomes greater that 4. This means that of all

azimuthal wavenumbers the most unstable wave is m = 4 (and also m = -4 since only m 2

occurs in the equation). For Mj = 2.5 the maximum is at m = +5.

A wave exp(-i_:z -imO) is interpreted as a helical wave on the surface of the jet,

with the wave making an angle tan-l(m/k) with the axis of the jet (rn = 0 is an axial

wave). Therefore there are two helical waves of definite angle, one left-handed and one

right-handed, which are the most unstable. This is similar to results of Sandham and

Reynolds (1990) on the stability of a compressible mixing layer. They find two oblique

waves with maximum growth rate which make equal but opposite angles with the flow

direction.

There are some implications of this for our proposed nonlinear computation. Sandham

and Reynolds (1991) in a second paper find a single oblique unstable plane wave rolls up

into an oblique vortex. We expect that a single unstable helical wave will roll up into a

helical vortex. Since our helical waves propagate downstream with a speed which is about

.66 times the jet speed, we expect a similar speed for the helical vortex. A propagating

helix will appear like a rotating helix-as a barber pole does. This is an interesting result

because there are observed jet modes, called spinning modes, where the noise field rotates

around the jet axis, so that to an observer on one side the sound appears to have a time

periodicity(Wesley and Woolley, 1975).

Sandham and Reynolds found that the angle of the most unstable oblique wave de-

pends on the convective Mach number in such a way that Mccosc_ _- .6, so that the



component of the Mach number perpendicular to the wave stays constant (and subsonic).

We find approximately the same result for the helical waves, based on only two Mach

numbers. In the Sandham-Reynolds nonlinear computations they find that because the

normal Mach number is subsonic the oblique vortex forms without shock waves (unlike

their strictly two-dimensional computations which do have shocks). This is possibly very

significant for our proposed computations. It means that helical vortices could form with-

out shocks. This is important when we use the B-spline/spectral method because any

shocks will have to be resolved by viscosity alone which could restrict our Reynolds num-

ber range.
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Section 2 : A Study of 2-D, Unsteady, Inviscid, Compressible Jets Using

a Second Order TVD Scheme

Computations of a two-dimensionalsupersonictemporal jet were made as a prelim-

inary study of the non-reflectingboundary conditions and to gain someexperiencewith

the temporal jet configuration. This wasdoneusingan efficient,parallel TVD 0-7 scheme

in a data-parallel environment to run on massivelyparallel processing(MPP) computers.

All the calculations are carried out on Thinking Machines' CM-5. It is hoped that these

calculations will help discern the intricacies of 2-D compressiblejet flows. An attempt is

madeto resolvethe turbulent scales(vortexstructures) usingvery fine meshes.No turbu-

lencemodel is used. Sincetheseareinviscid calculationsthe numerical dissipation of the

schemeis used to approximate viscousdissipation effectsof real fluids. In this study a

secondorder explicit non-MUSCL upwind TVD algorithm asproposedby Yee7 is used.

Initially a 2-D versionof the half-gaussianjet profile describedin the previoussection

is used. Anti-symmetric disturbances were imposed on the initial jet profile since they

werefound to be moreunstable. This ensuresthe break down of the shearlayer into small

vortical structures.

The computational domain wasdiscretizedinto a very fine meshof 512"512grid cells.

The physical dimensionsof the domainare twice the wavelengthof the most unstablewave

(found from linear stability analysis) in the streamwisedirection and 3 to 4jet diameters in

the transversedirection. Grid stretching is usedfor a layer of cells (onejet diameter wide)

near the boundary in order to weakenany outgoing waves.At the transverseboundaries

the approximate non-reflectingboundary condition lOp_ +pav _ = 0 was used. The primed

quantities are perturbations from mean flow, and a is the speed of sound.

Simulations for a fully expanded cold jet at centerline Mach number of 2.0 are pre-

sented.

Highly resolved flow solutions capturing a wide range of turbulent scales are achieved.

Figures 1-3 show the various stages of temporal jet development. The Mach contour

and pressure contours show distinct development of shocks which were absent initially.

The isobars also show alternating high and low pressure regions corresponding to vortical
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structures. From the vorticity contours we notice that the initial structure of two vortex

sheetsbreaks down into smaller vortices.

It is evident from the plots that the non-reflectingconditions work fairly well.
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Figures

Fig. 1 Contour plots of Mach Number after 1000,1900,4000, and 7300 time steps
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Fig. 2 Contour plots of Pressure after 1000, 1900, 4000, and 7300 time steps
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Fig. 3 Contour plots of Vorticity after i000, 1900, 4000, and 7300 time steps
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Chapter 2 : Direct Numerical Simulation of Unsteady, Compressible Round Jets

Introduction

Jet noise is a major concern in the design of a supersonic transport (SST) aircraft.

Studies by various researchers 2-4 lead to aerodynamic noise as a major contributor to

jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to

turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly

growing or decaying vortices.

The object of this work is to obtain highly accurate flow solutions of a turbulent

round jet. These solutions are expected to help understand the various turbulent scales

and mechanisms of turbulence generation in the evolution of a compressible round jet. We

hope to use these accurate flow solutions to estimate acoustic radiation in the near-field

region. Also the data generated can be used to compute various turbulence quantities such

as mean velocities, turbulent stresses, etc. which may aid in turbulence modeling.

We simulate a compressible round jet by using Fourier expansions in the azimuthal

and streamwise direction and a 1-D B-spline basis representation in the radial direction.

This is an efficient and accurate way to separate out the 0 and z variables, leaving partial

differential equations(PDEs) depending on r and t only. By using a 1-D B-spline basis

and a Galerkin approximation we can reduce this set of PDEs to ordinary differential

equations(ODEs) in time. This is solved by a 3rd order Runge-Kutta time marching

scheme. The present study uses a spectral method developed by Moser et al. T

We consider the temporal jet problem for two reasons: one since this configuration

allows for the application of highly accurate spectral methods and the other because the

dynamics of the temporal jet is not greatly different from that of a spatially evolving jet.

The spectral accuracy helps capture smaller turbulent scales.

Governing Equations

The compressible Navier-Stokes equations written in cylindrical coordinates in non-

dimensional form are,
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where,
O O O 10 O 0

O:q Or Oz2 r O0 ' -Oza Oz

or= _, mk = p uk, Re= _, , Pr = _,,

Re, Pr are the Reynolds number and Prandtl number, Cp is the specific heat at

constant pressure, and • is the viscous dissipation (see Appendix).

B-Spline Representation and Galerkin Formulation

The flow variables are expanded using Fourier sums in the two periodic directions, viz.

the azimuthal (0) and the axial (z) directions. In the non-periodic or radial direction (r)

we use 1-Dimensional B-splines as interpolating functions. 1 B-splines have local support

and hence lead to sparse block diagonal matrices which can be efficiently stored and solved.

Application of boundary conditions is similar in ease to a finite element method (FEM).

B-splines of order n are piecewise polynomials of degree n having n - 1 continuous

derivatives. Since they have a high degree of continuity derivatives of quantities (like

velocity to get vorticity) can be smoothly and accurately represented.

They have 1 degree of freedom(d.o.f) per interval unlike finite element(FE) basis which

can have as many d.o.f as the order of the polynomial. We use B-spline bases because

higher order FE bases may resolve waves of wavelength smaller than twice the interval
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length due to the increasedd.o.f. But this is beyond the Nyquist cut-off for the interval

sizeand sothese increasedd.o.f do not improve the resolution (i.e. the smallest accurately

representedscale)of the solution only thing that gets better is the accuracy (convergence

rate is increased).Higher order B-splineson the other hand not only have better accuracy

but also have better resolution of scalesper d.o.f.

The Galerkin method using B-splinesas basisfunctions hasbeen usedpreviously by

someresearchers.5-7 By using a Galerkin approximation we can approximate the set of

PDEs as a set of ODEs in time.

One can usea B-spline basisto representthe desired function f(x) as,

C_

S(x)= Z a, bT(x)
j_--OO

where,

b}'(x) is a n th order B-spline coefficient, aj is the value of function at knot j.

Using a Galerkin approximation we can write, (bk is the weight function)

(4)

./ba f(x)dx = E aj / bjbkdx (5)
J

Also, the derivative of f(x) can be written as,

if(x) = E aj b}(x) (6)

J

But here the order of the polynomial has reduced by 1 so in order to keep the degree

of polynomial the same we approximate the derivative as,

if (x) _ g(x) _ _ aj b}(x) _ _ ca b2(x ) (7)

J J

Again the Galerkin approximation is written as,

bk f'(x)dx _ EaJ f b} bkdx (8)
J
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Any non-linear terms are handledin a similar way, i.e. if

h=f.g

h= Z dj b2(x) ,_ ZaJ ck bj bk

j j,k

j j,k

(9)

The matrices (terms with the integral) on the right hand side of equations (5) and

(8) are called the mass and derivative matrices respectively. All different combinations of

such derivatives and other terms are computed as matrices too. These are calculated only

once using a Gaussian quadrature and stored as opposed to a regular finite element (FE)

basis where they can be calculated on the fly when required.

Writing the governing equations in the Galerkin form using the B-spline representa-

tion yields a number of matrices similar to the mass and derivative matrices, non-linear

advection terms yield matrices similar to the non-linear matrix obtained in equation (9).

In Galerkin form the continuity equation can be written for any ko and kz as (ko and

kz are wave numbers in the 0 and z directions respectively),

l j,k,_

/. . /. ...)0 bi bj bk bz rdr + -- bi bj bk bz
+ -_mok r Oz rn_k

(_o)

where,

= =
k k

k k

The Fourier terms (eik°e ik_) are included in the coefficients of the variables. So

O'k(Z, O, t) = Crk(t ) }-_"ko _--_-k= eik°O+ik_z and so on.

Since we are using 1-D B-splines all the integrals are line integrals over the radius.

These are computed exactly using Gaussian quadratures (doing integrals exactly takes care
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of aliasing). The derivatives in the 0 and z are taken by Fast Fourier Transforming (FFT)

into wave space and multiplying by the appropriate wave numbers ke and kz, and then an

inverse FFT is applied to bring it back to physical space.

The momentum and energy equations can be written in a similar manner.

r--o

Eig__l 0uadratic D-SDlines

Non-Reflecting Boundary

Fiu2 Computational Domain

Numerical Formulation

Writing the flow equations in a manner as discussed above results in a linear system
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of coupled equations to solve simultaneously at each time step. Since these B-splines (of

order n) have local support on n + 1 knot(node) intervals (see fig.I) we get a 2n + 1 block

banded matrix system.

M f = R (11)

where,

M is the resulting mass matrix, f is the column vector of nodal values we solve for,

and R is a column matrix resulting from the RHS of the governing equations.

Time integration is carried out by a 3 _d order Runge-Kutta scheme.

Regularity Requirements

In the cylindrical coordinate system the origin (r = 0) is source of concern since some

of the functions do not remain analytic as they have a 'r' in the denominator. From a

mathematical point of view the flow variables should be single valued and finite. To enforce

this the polynomial expansion functions must satisfy some regularity requirements, s

The z-component of the velocity should be represented as,

Uz(r; re, k) =a(m,k) r Iml Pz(r2; re, k)e i'n° eikZ, m=all integers,

Pz(0; re, k)= 1,

(12)

where Pz(r2; m, k) is a polynomial in r 2.

Scalars and z-components of all vectors should be represented in a similar manner. The

0 and r-components of the vectors are dependent on each other and should be represented

as

Ur(r; m, k) = b(m, k) r I'_1-1 P_(r2; re, k) e imo e i kz,

uo(r; m, k) = e(m, k) rN-1 p0(r2; m, k) e_ ._0 ei k_

c(m,k) = ib(m,k) for m _> 1, (13)

c(m,k) = -ib(m,k) for m <_ -1,

P,.(0; re, k) = P0(0; re, k)= 1,
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for rn = 0 b(rn, k) and c(m,k) are unrelated.

Enforcing these conditions gives rise to a set of constraint equations which then replace

some rows in the mass matrix and suitably modify the RHS vector R.

We can obtain the constraint equations as follows, for a quadratic B-Spline and any

scalar u,

u(r; re, k) = a(m,k) r I'_1 P(r2; re, k) eim° e i kz, m=all integers,

Only non-zero derivatives allowed are Im] + 2j Vj _> 0

For quadratic B-splines (see fig.l), at r =_0, 3 splines have support at the origin.

Order of non-zero derivatives for the splines is,

Spline 1 ::* O, 1, 2

Spline 2 _ 1, 2

Spline 3 _ 2

All other splines are zero at r = O.

Consider spline expansions as _-_i as bi , where bi are the spline coefficients. We have

in any interval,

E bi = 1 =_ bt + b2 + b3 = 1
i

bl + b;= 0 bl= -b;

Now consider different values of the azimuthal wave number m,

for rn = 0

Only non-zero derivatives allowed are 0, 2, ... even powers, so all odd powered deriva-

rives should be forced to zero. At r = 0 splines having non-zero first derivative are splines

1 and 2, so,

(14)



for rrt = 1

Only non-zero derivatives allowed are 1, 3, ... odd powers, so all even powered deriva-

tives should be forced to zero. At r = 0 splines having non-zero 0th and 2 _d derivatives

are splines 1 and splines 1, 2, and 3 respectively, giving constraints,

al = 0, and

a2b' 2' + aab' a' = 0

Similarly,

for m=2

Only non-zero derivatives allowed are 2, 4, ... even powers, giving

(15)

al = O, a2 = 0 (16)

and

for m=3

Only non-zero derivatives allowed are 3, 5, ... odd powers, so

al = a2 = aa = 0 (17)

or, all splines should be zero. For all other values of rn we get the same result as (17).

Now equations (14-17) are the constraint equations which will replace the appropriate

rows in the matrix M and vector R.

Before replacing rows which actually contain the physics of the flow care has to be

taken to see that no information is lost. So, we need to take a linear combination of those

rows to be replaced and add them to the remaining rows in a particular manner. For this

• the null space of the constraint equations has to be computed and the eigenvectors of this

space are to be used for the linear combination. This is done as shown below.

foropol=7andm=l

The first set of rows in the mass matrix are written as,
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m !

fl 0 0 0 0 0

o b_ b_ o o o
* * * * * *

o b_ b_ b_ b_ o
* * * * * *

o b_ b_ b_ b_ _

The rows with ,'s are the unconstrained rows and

Now to choose a set of null vectors Xj such that,

mIXj = 0

Let us choose

0

0

b_

the b} are the bspline derivatives.

(18)

as,

Xj =

(o o o_
1 0 0

zll 0 0

0 1 0

x12 x21 0

0 0 1

t Xl3 X22 X31)

So we can compute the null vectors using equation 18.

Now the mass matrix M is modified by using the null vectors for linear combinations

row2 = row2(original) + xn * row3 q- x12 * row5 q- x13 * row7

row4 = row4(original) + x21 * row5 + x22 * rowr

row6 = row6(original) + x31 * rowr

This has to be done for all values of the azimuthal wave number m.

This procedure can similarly be applied to all the flow vectors and scalars appearing

in the vector f. The derivation of constraints is similar for higher order splines.

CFL and Modal Reduction

Another concern arising due to a cylindrical mesh is that near the origin the aspect

ratio of the ceils gets very high, so we have to reduce the number of azimuthal modes
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near the origin to maintain a good CFL number. This we will call mode suppression. So

we effectively reduce the number of azimuthal modesto 1 near the origin and increaseit

successivelysuch that at the outer boundary wehaveall the azimuthal modes.

This reducesthe accuracy but helps us increasethe time-step, dt, by a significant

amount. Another advantage of doing this is that the computational domain in Fourier

space is significantly smaller thus allowing faster computations, i.e. For lower azimuthal

wave number x, the computations have to carried out for more radial points, but as x

increases fewer radial points have to be considered. Another way to look at it would be

near the origin fewer x loops need to be considered.

This is to be implemented by making the upper bound of the x-loops to be dependent

on y, i.e. x= 1 to nx-modified[y] if the y-loop is the outer loop, or making the lower bound

of the y-loop dependent on z if the z-loop is the outer loop, i.e. y = ny-min[x] to ny.

Optimizations

The code was optimized thus,

• Moved all major computations (rhs of governing equations) to separate subroutines

thus reducing the load on the main program and enabling it to be unrolled and vec-

torized more efficiently.

• Manually unrolled the quadrature sum loops. This helped in decreasing the number

of operations by eliminating a lot of repetitive computations due to proper regroup-

ing. Similar and symmetric matrix multipliers were regrouped together thus reducing

redundant calculations.

• Vectorizing over larger loops.

Following the above procedure has helped reduce the time taken per mode per Runge-

Kutta step considerably.

Boundary conditions

Ideally, the computational domain should mimic the physical domain by including

all free space and only having physical boundaries. But this is not possible and the
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computational domain has to be finite. So we need artificial boundaries to limit the

computational domain. But we want these artificial boundaries to be invisible to the

flow field so that vortices and other wavescan passthrough theseboundaries and leave

the domain without giving rise to spurious reflection waves. So we need non-reflecting

boundary conditions (NRBCs).

In solving a temporally evolvingjet the inflow-outflow boundariesare made periodic

(seefig 2). This might not be very accuratebut servesthe purposeof studying turbulence.

Also it takes care of the inflow-outflow boundary conditions. This also enablesus to use

a spectral expansionin the axial direction. So the only boundaries of concern are tile

transversenumerical boundaries. If we havegood boundary conditions we can make the

computational domain smaller and thus get a higher resolution and compute finer scales.

Several investigators 9-14 have studied and used different types of non-reflecting

boundary condtions. Engquist and Majda 12,1astudy the wave equation and develop

a perfectly non-reflectingboundary condition using pseudo-differentialoperators. But this

equation is non-local in both spaceand time and is of little use for computational pur-

posesas we would have to store data on the boundary from previous time-steps. But by

approximating the operator they also develop a hierarchy of approximate NRBCs , with

the increasingaccuracy in passingobliquely incident waves.

We usethe first order non-reflectingboundary conditions for outflow at the transverse

boundary, which can also be derived from physical considerations using 1-D Riemann

Invariants. The outflow boundary condition is,

0 , 0 Coo , (19)b-/p - poo oo -

where R is radius of outer boundary, and the primed quantities represent the pertur-

bations from mean flow and the oc quantities represent free stream or mean flow. The

term on the right hand side is a correction for a cylindrical boundary.

This boundary condition is supposed to ensure that there are no incoming waves from

infinity. It works well for directly incident waves. We think that this will serve the purpose

since we would have nearly cylindrical wavefronts incident on the boundary which is also
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cylindrical. In addition wehope to mitigate the outgoing waveamplitudes by coarsening

the meshgradually asweapproachthe boundary aswasdonein the 2-D preliminary work.

Now to implement this boundary condition in our schemewehaveto transform the last

set of equations, which represent the physics at the boundary, to characteristic variables

at eachsubstepof the Runge-Kutta algorithm.

This is doneusing the following transformation matrix from Giles.9

Cl p2 cec

c2 p cauo coo 0 0 0 tmo
2

c3 = - pa ca u,. 0 -coo 0 1 tim,.
2

C4 PaCooUz 0 0 Coo 0 (_mz
2

c5 poo coo u_ 0 Ca 0 1 @

(20)

where the ci's are the characteristic variables and the &quantities are time incremental

quantities.

So we can modify the last five rows of the mass matrix and the right-hand-side using

the above transformation.

Equation 19 can be written as

Coo !

So to implement the above b.c. we have to replace the third of the last five rows

including the right-hand-side by the above equation since the third characteristic c3 has

the right form for the b.c.
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Test Cases

A few simple test cases were run to validate the code and for diagnostic purposes. In

all cases the desired steady state solutions were obtained to machine accuracy. All cases

except the rotating flow case were run using quadratic B-splines.

Case 1 : Uniform flow through a circular pipe

Flow conditions are,

1
uo = O, u_ = O, p= -#, o = T

R=I

Choose _c = _ then,

_Re
u_ - (R2 _ _2)

4_

From the temperature equation (eqn 5) we have a balance,

heat flux = - viscous dissipation

or,

# _72T = _/- l(i )
RePr Re

(refer Appendix)

Solving the above equation and applying the b.c's

OT

Or It=0 = 0

Tr=R= 1

gives,

1
T- "7 Pr(1- r 4)+1

4
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This test casehelps check the temperature equation and uniform flow in the z -

direction.

=1 - r^2

Z

Fig. 3

Case 2 : Uniform flow through permeable boundaries

Flow conditions are, ur = ucosO, uo = -usinO, uz = O, p = ¼, cr = 1
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Fig. 4

This checks the flow jacobians and also non-axially symmetric flow.

Case 3 : Uniform Rotating Flow

Flow conditions are,

uo = rf2, u,. = O, uz = O, T = l
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The momentum equation reducesto,

Op pu_

Or r

7crp = 1

if p at outer radius is po,

.7r2 t_ 2

p = poe 2

Fig. 5

This flow tests the azimuthal dependence. Here we had to switch to higher order B-

splines since the variables are exponential functions and are better represented by higher

order B-splines.
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Case 4 : Spherically Radiating Flow

T

0
A

/

Fig. 6

This is to test the non-reflecting b.c's.

We consider a spherically radiating point source flow placed at the center of a cylin-

drical domain. The solution is singular at the origin and is therefore picked up after a

finite time and is treated as an initial value problem. This test case is very robust, since

there exists an exact time-dependent solution with which we can compare our results. This

test case not only tests the non-reflecting boundary conditions but also helps validate the

entire code.

The radiating bubble is considered as a perturbation to the mean flow which is,

P= ¼, or= 1, ur =Uz =uo =0

The perturbation is taken as a point source solution of the linear wave equation which

is written as a velocity potential • - f(t-_) Where x = v/_ + z 2, c is sound speed, and
X

t is the time. f can be any function. We have used a cubic function for f,
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_I _ 1 (t- _)3(tl - t+ _)3
- 4--_

0

The function is plotted below.

c(t - tl) < x <_ ct,

otherwise

0.0 Xc(t-t_) ct

Fig. 7

The fundamental perturbations are expressed in terms of the velocity potential as,

if= -Poo Ot

(71 : pl

u_=o- V
!

ue:O

Uz=8--T

Plotted below are the density profiles as time progresses. The dotted profiles which

almost overlap the solid lines are the exact solutions. Figure 8 plots density versus 7" at

z = 0 while figure 9 shows density versus z at r = 0. Figure 10 shows a cross section
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of the spherical wavein a r - z plane. From the plots we can see that the non-reflecting

conditions work fairly well. The waves which are incident normally pass through the

artificial boundaries with little or no reflection. In figures 8 and 10 the plots with t = t3

show a weak reflected residual wave. This is as expected since the non-reflecting conditions

are exact for normally incident waves, but oblique waves would cause some reflection. These

reflected wave amplitudes can be further reduced by stretching the grid near the boundary

(not done here).

0_

.... + ..... i .... i .... J

oo 02 o4 oe oa 10
r

1.0_.4
t'l I

0_

oo o2 o,I o+s oli + o
r

o_

o_

aa o2 o_ oa oa _
f

1_oo

I.L,

.... , I .... I .... L .... b
OO 02 B4 OS OS +m

t

Fig. 8
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"4

t.t,

Fig. 10

A more general and similar test case would be to shift the origin of the point source
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off the z-axis. So the flow is not axis-symmetric anymore.

Conclusions

A Numerical code based on the spectral method of Moser 7 was developed in cylindrical

coordinates using Fourier expansions in the azimuthal and streamwise direction and a 1-D

B-spline basis representation in the radial direction. Time integration is carried out by a

3 rd order Runge-Kutta time marching scheme.

The code was validated against some test cases. Non-reflecting boundary conditions,

used at the outer boundary, have also been satisfactorily tested.
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Appendix

The compressible Navier-Stokes equations in cylindrical coordinates

Op 10(rpur) 10(puo) O(puz)

o--i+ + +r Or r O0 Oz
- 0 (A.1)

p( DurDt

P ( Duo--5i- + --

up _ OP OTrr 1 OTtO OTrz Trr -- TOO

r ) - Or +--_--r +--+ +r O0 _ r
uruo _ 10P Oror 1 0700 OTOz fro

r ) -- r 00 +--_--r +--+r 00 _+2--r

Du_ _ OP O'c=r 10r=o Or=z rzr
P Dt Oz +--_-r +--+r O0 _+--r

where,

_-=#

o___ _! V.g_
\ Or 3 )

l Ou. -- 0 / uo \
-; oo * r_ir )

o___a____
Or -- Oz

7 oo
1 1

r - gV "_)

Oz r O0

Or -- Oz
O_o a_ ! o_____
Oz -- r O0 -.

 v.u)

D

Dt

V._=

0 0 uo 0 0

Ot + ur 0-_ + --r --00 + Uz --Oz

10rur 10uo Ou=
- --t----+--
r Or r O0 Oz

# is the viscosity,

(A.2)

OP
-- + V.P12 =
Ot

-(3'- 1)PV-_ + (3"- 1)V. q+ (3"- 1)_

_'is the heat flux, T is the temperature, _ is heat conductivity,

(A.3)

(= -_VT, T = 7 _r P

and gp is viscous dissipation given by,

_ =#(2(( 0r ,

10u=

+(;-g-y+

10uo 2 .OUz ,2\

+ (;--g-+ + )
Ouo ) 2 ,Our Ouz _ 2 1-gTz, + l-g-; +-g-r " + (-;_-o +

Or
u0)2 2(v. _)2);--5
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